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Abstract
This paper presents a new energy vehicle driving
control system based on image processing technology.
Through processing and analysis of road images,
the new energy vehicle driving control system is
able to recognise road elements, plan a route, and
calculate its direction and speed parameters. In
order to improve the system’s applicability in various
environments, it first divides the road image into two
categories: road surface and other objects. Then,
it uses a manual iteration method to determine the
optimal threshold and suggests an adaptive threshold
improvement method. Second, the system carries out
feature extraction of road elements, including sample
types like ramps, straight roads, curves, intersections,
and obstacles. Through secondary feature extraction
and sample type characterization, the system achieves
the recognition and classification of various road
elements. Ultimately, the system executed image
capture, preprocessing, and boundary extraction. It
then achieved vehicle navigation by using path planning
and road centerline fitting. The technology determined
the corner parameter and offered precise navigational
directions for vehicles during the vehicle direction and
speed parameter test. The driving control system for
new energy cars is highly applicable and practical,
offering efficient technical assistance for the safe
operation of these vehicles in intricate road conditions.
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1 Introduction
Higher standards have been set for new energy vehicles’
safe and intelligent driving control systems due to their
ongoing research and use [1]. In the field of automotive
intelligent driving, image processing technology is
becoming more and more significant, particularly in the
study and use of visual perception [2, 3]. This study
presents a new energy vehicle driving control system
based on image processing technology [4]. It realises
the tasks of road element detection, path planning, and
vehicle navigation by using real-time processing and
analysis of road images.

One of the most significant approaches to addressing
the energy issue and environmental degradation is the
development of new energy vehicles [5]. New energy
cars do, however, have numerous difficulties when
driving, including precise navigation in intricate road
settings and safe driving. Thus, it is imperative to
conduct research and build an intelligent driving control
system in order to enhance the driving experience,
safety, and comfort of new energy cars [6].

As a potent tool for perception, image processing
technology can convert information about the vehicle’s
surroundings into digital data, giving it the information
support it needs to drive intelligently. Real-time road
element recognition and analysis can be achieved by the
processing and analysis of road photographs. This will
enable drivers to make more informed driving decisions
by giving them access to more thorough and accurate
road information [5, 7].
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Nevertheless, there are several difficulties with the
image processing-based new energy vehicle driving
control system. First, the intricacy of the road
environment, including shifting lighting and blurring
of road signs, makes processing and analysing road
photos more challenging and complex [6]. Second,
the system must make accurate judgements and replies
quickly in order to be both real-time and accurate. This
places more demands on the algorithm’s stability and
efficiency [8]. Furthermore, identifying and categorising
various road aspects is difficult and necessitates the
development of appropriate feature extraction and
classification algorithms in order to produce correct
recognition and classification [5].

This research proposes an image processing-based
new energy vehicle driving control system with
the following benefits: First, it achieves efficient
processing and segmentation of road images and
enhances the system’s stability and applicability
in various conditions by utilising the enhancement
techniques of threshold segmentation and adaptive
thresholding [9]. Second, accurate recognition and
categorization of road elements are realised by sample
type characterisation and secondary feature extraction,
which offers dependable support for vehicle intelligence.
Ultimately, the vehicle’s navigation is realised through
image gathering, preprocessing, boundary extraction,
road centerline fitting, and path planning. This
enhances driving comfort and safety while offering
drivers precise navigational direction [10].

The image processing technology-based new energy
vehicle driving control system has significant research
relevance, real-world application value, and a wide
range of potential uses in addressing safety and
intelligence issues in new energy vehicle driving.

2 Adaptive threshold segmentation
Threshold segmentation, which divides the pixels into
two categories by comparing each pixel point’s grey
value in the image with a predetermined threshold
value, is utilised in this study [11]. The road
background in this paper is blue, the road edges are
black, and the road pavement appears white. The
road pavement’s grey value differs significantly from
other objects’ grey values in comparison [12]. Thus, by
splitting the road image into two sections—the road
surface (target) and other items (background), the
study seeks to differentiate the road surface from other
objects (such as road boundaries, background, barriers,
etc.). The following describes the precise threshold
segmentation computation procedure [13]:

Data(n, m) =
{

0, Data (n, m) < GrayThreshold ,

1, Data (n, m) ≥ GrayThreshold .

(1)

GrayThreshold is the threshold value that is currently
in use, where Data(n, m) is the picture matrix.
Selecting the right threshold value is essential to
the threshold segmentation procedure. A threshold
that is set too high could lead to more interference
information, whilst a threshold set too low could result
in less road edge information. As a result, cautious
observation and discernment are needed, and suitable
thresholds must be established using various auxiliary
tools or by analysing the data from the histogram.
To determine the optimal value that satisfies the
experimental conditions, researchers must continuously
interact and experiment with different thresholds [14].
The edge information, or target information, of the road
pavement is the primary feature of the road image in
this study. Thus, our objective is to efficiently segment
the road edge data and remove interference. In order to
achieve this, we utilised the road image to perform grey
level histogram statistics; the outcomes are displayed
in Figure 1.

Figure 1. Gray scale histogram statistics

Less grayscale statistics should be found along the road
boundaries and more in the background, according to
an analysis of the histogram’s statistical data. It is
evident from the statistical graph that the background
portion should contain the highest peak. Further
investigation reveals that the threshold ought to be
set at the peak and valley between the highest peak
and the left peak, or on the left side of the peak.
Until we determine the ideal segmentation value,
we can experiment with other thresholds. Manual
iteration is another name for this process [15]. Our
experience indicates that the threshold value should
be approximately T = 150, and that it should then be
modified based on the particular circumstances. The
experimental results are shown in Figure 2.

Based on the aforementioned experimental effect
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photographs, we may discern the target from the
background by selecting a threshold value of T=180;
however, noise will still be present. As a result, we think
that T<180 should be the cutoff value.Furthermore, the
target part has been over-separated when the threshold
value T=100 is chosen, leading to the loss of road
edge information. As a result, we think that T>100
should be the threshold value. After doing numerous
tests and modifications, we ultimately determined that
T=140 was the threshold value. The interference
can be successfully filtered away at this threshold
value, leaving the target and background distinct from
one another. Consequently, the ideal threshold is
established at this value.

Figure 2. Hand-picked thresholds

The aforementioned approach uses manual analysis
to calculate the global threshold; nevertheless, its
usefulness is restricted. It is required to remeasure
the environmental feedback image and recalculate the
threshold value whenever the environment changes
(for example, when light intensity changes). The
technology in the smart driving car ought to be able to
recognise and navigate through various environments
on its own. To improve the system’s applicability, an
enhanced adaptive threshold selection mechanism is
suggested. Through examination of the road and image,
we discovered that the background and road have
comparatively uniform grayscale distributions, and the
grayscale histogram of the image clearly displays a
bimodal distribution. In order to increase the system’s
adaptivity, we therefore choose to use the peaks and
valleys between the two highest peaks as the threshold
value.

This algorithm’s core idea is to first compute the
histogram statistics of each image’s grey values. Then,
using the lookup approach, it finds the peaks of two
primary peaks, H1 and H2, which correspond to the
grey values T1 and T2, respectively.Next, in the interval
between [T1, T2], the grey value T, which corresponds
to the lowest peak and valley between the peaks, is
determined. T is then used as a segmentation threshold
to categorise the image’s pixels. Figure 2 displays the
adaptive thresholding method.

This study defines GrayThreshold as the threshold that
is now in use, Pre_grayThreshold as the threshold that
was last used, and Init_grayThreshold as the manual
threshold. The following is the general flow of threshold
tracking:

Step 1: By manually examining and analysing
the first image, determine an appropriate threshold
Init_grayThreshold.

Step 2: The adaptive law computes the current
threshold GrayThreshold.

Step 3: By comparing the difference between
Pre_grayThreshold and GrayThreshold, one can
determine if GrayThreshold is currently used as the
threshold or Pre_grayThreshold. If the absolute value
is less than the empirical value G (G=16 is used in this
system) or the empirical value of two times of G when
comparing the difference between Init_grayThreshold
and GrayThreshold, GrayThreshold is currently used as
the threshold. In all other cases, the current threshold
is Pre_grayThreshold.

Step 4: Pre_grayThreshold is the current threshold
when the adaptive threshold cannot be computed (no
value).

According to the aforementioned procedure, the
threshold value is updated continually, and at this
point it is also referred to as the dynamic threshold
value. This means that every image uses a newly
established threshold value as the segmentation
criterion. The system is highly adaptable to various
lighting conditions; in fact, it can determine the
appropriate threshold value based on the distribution
structure of the grey level histogram in any given
environment.

3 Road element characterization and extraction
Road elements, which are specified and represent
sample kinds in the feature space, include straight
roads, curves, crossroads, obstacles, ramps, etc. in
this intelligent driving control system. Road element
feature extraction is the process of extracting the
corresponding feature portion from the road image
to describe the various sample kinds based on their
characteristics. Supervised learning is another name
for this pattern training procedure because the machine
knows the sorts of samples.

3.1 Secondary feature extraction
Following edge detection, this system extracts edge
information. Several features are obtained after
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secondary feature extraction, including the following:

1. Route left edge characteristic X1. The continuous
line shape of the stored left edge fit may be
continuous or intermittent depending on whether
the road’s left edge collection exists.

2. Side of road feature X2 on the right. The fitted
line on the right edge of the road may be in an
intermittent or continuous scenario since the right
edge is collected in the same manner as the left
edge.

3. Centerline curvature characteristics. There will
be sporadic lines since the centerline is drawn
from the left and right margins of the road;
nonetheless, the curve of the centerline provides
more significant information.

4. Characterization of the left and right borders X7 in
terms of distance. Based on the difference between
the existing left and right borders, the left and
right boundary distances can be created.

5. Features of edge length X8. When the edge
is straight, its length can be determined by
comparing it to the entire edge.

3.2 Characterization of road elements
The sample road elements—straights, curves,
crossroads, obstacles, ramps, and right-angle
turns—are described by the aforementioned
characteristics in the context of the secondary
feature extraction mentioned above.

1. Features of the straight channel class W1 include a
centerline curvature of |θ| ⩽ 30◦ and present and
uninterrupted left and right edges.

2. Bend class features: bend features include
potential loss of left and right edges on one
side. radius of the centerline |θ| ⩾ 30◦ centerline
curvature 3◦ ⩽ |θ| ⩽ 30◦ in the case of a W2 bend.
centerline curvature in the case of a |θ| > 30◦

bend.

3. Features of a crossroads class W4 include missing
left and right margins, a straight and interrupted
centerline that extends about the width of the
road, and a centerline curvature of |θ| ⩽ 30◦ .

4. Ramp class W5 feature: the length of the image
edge c is slightly shorter when travelling uphill, but
otherwise, the ramps remain unaltered in terms of
the road alignment in the longitudinal section.

5. Challenge W6 Features: the road obstacle is
confined to one side of the road, and its edge
is also identified as the road edge during the road
detection process. Consequently, both the left and
right edges of the road are present at that location,
the distance d between the left and right edges of
the road narrows, and the centerline’s curvature
is |θ| ⩾ 30◦ .

This approach uses samples of road elements with
known conditions; that is, the process of fitting linear
or discrete functions of X and Y can be understood as
training the classifier with known input X and output
Y. The block diagram presented in Figure 3 illustrates
the training procedure.

Figure 3. Training process

4 Effects of visual image processing
4.1 Research techniques and image Acquisition
A Sony CCD analogue camera and a USB 2.0 video
capture stick EasyCAP were connected to create the
field of view of the new energy vehicle in order to make
the study and visualisation of the image processing
algorithms easier. After that, Honestech VHS to DVD
2.0 software was set up on a PC and used to read the
video stream. MATLAB 2015b was used for image
processing and simulation, and C was used to write
the algorithms that applied to the smart car platform.
Lastly, a download to the smart car for testing was
made via J-Link. Figure 4 depicts the acquisition
procedure in its entirety.

Figure 4. Images are added and tested

We were able to successfully record the visual
perception of the new energy vehicle to the road
information by connecting the PC to the CCD camera
seen in Figure 5. As seen in Figure 5, we intercepted
some photos during the experiment that showed, in that
order, ramp, obstacle, tiny wave, intersection, straight
road, 90◦ corner, big wave, and one-sided field of
view. One-sided vision is more common when driving,
particularly in surroundings of the Ω, S, n, and circular
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types, which are nearly always encountered despite
variations in the curved curves’ radius of curvature.

Figure 5. Camera vision

4.2 Preprocessing images and extracting boundaries
An enhanced median filtering algorithm is used to
the grayscale image of a big wavy road (Figure 6).
The algorithm first evaluates if each pixel point is
extreme or not, and then it performs image purification.
The outcome is displayed in Figure 6. By examining
the picture histogram, the system determined the
dynamic threshold GrayThreshold = 140. It then
carried out threshold segmentation using the formula
to produce Figure 6. After that, the myopic region’s
stable boundary information was obtained by scanning
from the middle. Following the scanning of the first
seven rows, boundary tracking monitoring was carried
out using the technique of expanding the left and right
by 30 pixel points. The road’s boundary information
was extracted and labelled independently throughout
the boundary information collecting process thanks
to the application of the enhanced Prewitt method in
Figure 4, which raised the boundary width’s feature
parameters (Figure 6).

Figure 6. Road image preprocessing

4.3 Image recognition and path planning
The procedure outlined in Section 4.2 is used to fit
road centerlines. First, it determines whether there
are any bilateral road boundaries. If so, points are
taken at the intersection of the two boundaries; if
there is just one, the points are supplemented; and if
there isn’t a boundary, the last centerline is followed.
The fitting effect is displayed in Figure 7, where the
vehicle travel path guide is the centre of the travel
lane, where the centerline is situated. The horizontal
distance from point a to the absolute centerline is

computed as the midpoint b by finding the maximum
left and right fluctuation point an of the centerline
(based on the absolute centerline l of the image, and
the midpoint of the first row is o). Next, a straight
line is drawn across points b and o, and the vehicle’s
current path is determined by following the straight
line. The driving path is optimised using this strategy,
as Figure 7 illustrates.

Figure 7. Median fitting and path planning

Using the edge of the road surface as the boundary
information, the centerline of the road surface in the
middle of the runway, the vertical vertical line as
the longitudinal axis of the camera, and the diagonal
straight line as the path planning line, the method is
used to extract the boundary, fit the centerline, and
plan the path for the road elements. According to
Figure 8.

Figure 8. Road element identification and planning

5 Experimentation
During the experiment, we were able to identify the
vehicle’s positional deviation and transmit the data
in real time to the host computer for observation.
Beginning at position 0, the vehicle measured the
distance every 0.5 metres and transmitted the corner
data to the host computer. The wheels’ revolution
count was tracked, and the position was sent at 0.5
m intervals by transmitting a cornering data at the
appropriate revolution count. We were able to get
the results depicted in Figure 9 by data collection and
graphing.

In order to measure the data for the experiment, we
set the vehicle’s speed to 1.5 m/s, 2 m/s, and 2.5
m/s. The data analysis revealed that the offset value
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is not significantly affected by the vehicle’s speed when
travelling in a straight line. On the other hand, as
the vehicle speed increases during a turn, the inertia
increases. Because of this, even if the car brakes in time,
it will still deflect somewhat. Increasing the turning
angle is required to modify the body position and
change the direction of the vehicle. This adjustment
phenomena is typical and shows that the effort required
for adjustment increases with vehicle speed.

Figure 9. Trajectory tracking corner deviation

With a test distance of 6.5 m and a corner range of [-45,
45], experiments were carried out for three different
speed levels. The speed range was restricted to [1, 1.5],
[1.5, 2], and [1.8, 2.5], respectively. The Fuzzy-PID
algorithm was utilised to regulate the velocity tracking
inputs, and the system’s velocity inputs were found by
fitting and calculation. As observed in Figure 10, the
figure illustrates how the speed varies in proportion to
changes in the corner.

Figure 10. Trajectory tracking corner deviation

6 Conclusion
This paper presents a new energy vehicle driving
control system based on image processing technology.
Through the processing and analysis of road images,
the system is able to recognise road objects, plan

a route, and calculate parameters related to vehicle
direction and speed. The best threshold is found
by hand iteration during the system design and
experimental validation phases. The adaptive threshold
improvement method is suggested to increase the
system’s stability and applicability in various contexts.
Through secondary feature extraction and sample
type characterization, the system achieves accurate
recognition and classification of various road elements.
It also performs feature extraction and classification
of road elements, including sample types such as
straight roads, curves, intersections, obstacles, and
ramps. Experiments are used to validate the system’s
precise calculation and management of vehicle speed
and cornering, ensuring the stability and safety of
the vehicle at all speeds and cornering situations. In
order to fulfil the expanding need of the new energy
vehicle market, the algorithm and system design can be
further optimised in the future to increase the system’s
intelligence and flexibility.
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