
Mari Papel Y Corrugado
https://doi.org/10.71442/mari2025-0004

ARTICLE

An innovative deep learning method for IoT malware
identification

Yan Zhang1,*

1 Department of Information Engineering, Shijiazhuang University of Applied Technology, ShiJiaZhuang 050000, China

Abstract
In the realm of information security, malware detection
in IoT environments is crucial. This research
proposes a heterogeneous graph network based malware
classification model to enhance the detection and
categorization of sophisticated malware samples. The
model is composed of five primary modules: a
module for building heterogeneous graphs; a module
for generating random wandering sequences; an
aggregation module based on LSTM; a module for
wandering based on attention mechanisms; and a
module for classification and prediction. Initially, a
heterogeneous graph comprising API and malware
nodes is built, and using random wandering, the
associations between far-off nodes are obtained to
improve the representation of node features. Next,
using the attention mechanism, LSTM is utilized to
aggregate the data of nodes on various paths, learn
how different paths affect nodes, and ultimately output
the node categorization results through the linear
layer. The model performs better in terms of precision,
recall, and F1 value than conventional techniques like
Node2Vec, GCN, and GraphSAGE, according to the
trials done on the APIMDS and Mal-API-2019 datasets.
Furthermore, by inserting, removing, and changing
pointless API calls, robustness tests are carried out to
confirm the model’s resilience to malware variants.

Keywords: internet of things, malware detection,
heterogeneous graph networks, LSTM, classification models,
deep learning

Submitted: 17 November, 2024
Accepted: 05 January, 2025
Published: 8 February, 2025

Vol. 2025, No. 1, 2025.
https://doi.org/10.71442/mari2025-0004

*Corresponding author:
� Yan Zhang
18031363773@163.com

Citation
Yan Zhang (2025). An innovative deep learning method
for IoT malware identification. Mari Papel Y Corrugado,
2025(1), 29–37.

© The authors. https://creativecommons.org/licenses/by/
4.0/.

1 Introduction
Internet of Things (IoT) technology is expanding
quickly and is being used extensively across a range
of businesses in the current digital era [1]. But as
the number of IoT devices has increased, malware has
spread widely, presenting a severe risk to information
security. Malware compromises data security and
personal privacy by entering Internet of Things devices,
controlling device operations, and stealing sensitive
information. This can have a major negative impact
on the economy and society in addition to being a
threat to data security [2]. As a result, it is crucial
to investigate and create effective malware detection
methods [3].

The two primary categories of malware detection
strategies are behavior-based and signature-based
approaches. Signature-based techniques detect
malware by comparing feature libraries of known
malware, which works well against known threats but
is less successful in identifying novel malware types and
variations [4]. Behavior-based approaches, which have
some flexibility and generalization power to identify
unknown malware, identify whether a piece of software
is malware by examining its operating behavior.
Nevertheless, as malware technology has advanced,
its concealed and sophisticated behavioral patterns
have created additional difficulties for behavior-based
detection methods [5, 6].

Current strategies for behavior-based malware
detection primarily depend on static and dynamic
analysis methodologies. Static analysis parses binary

29

https://doi.org/10.71442/mari2025-0004
https://doi.org/10.71442/mari2025-0004
mailto:18031363773@163.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Mari Papel Y Corrugado

data and software code to extract features, but it has
trouble handling methods like encryption and code
obfuscation. By mimicking the software’s running
environment and keeping an eye on its system calls,
network activity, etc., dynamic analysis is able to
extract features. While it can partially address the
drawbacks of static analysis, it still has issues including
a large overhead and a sluggish detection speed [7, 8].
Additionally, as deep learning technology advances,
an increasing number of researchers are using it to
identify malware. By automatically extracting features
and patterns through the learning of a vast quantity
of sample data, deep learning improves detection
resilience and accuracy. However, it is challenging to
properly utilize the structural relationship information
across samples because standard deep learning methods
mostly rely on the feature vector representation of
samples [9].

This research suggests a malware classification
methodology based on heterogeneous graph networks
to overcome the aforementioned issues [10]. By
building a heterogeneous graph with malware and API
nodes and using methods like random wandering and
LSTM aggregation to thoroughly explore the structural
relationships and node features among samples, the
model increases the accuracy and robustness of malware
detection and classification. In particular, this
contribution primarily focus on the following areas:

In order to create a heterogeneous graph with malware
nodes and API nodes, malware and the API call
sequences associated with it are chosen as study items
[11, 12]. A graph structure that may accurately depict
the behavior of malware is created by streamlining the
API call sequences, eliminating consecutively repeated
API calls, cutting down on the graph’s complexity, and
keeping the most important behavioral aspects.

In order to retrieve the complete feature representation
of the current node, the LSTM model is utilized
to perform feature aggregation on many pathways
created by random wandering and capture the sequence
information of the nodes on the paths.When processing
sequence data, LSTM performs well and may efficiently
combine data from several pathways to increase feature
representation accuracy.

Furthermore, this work designs adversarial tests of
insertion, deletion, and replacement of useless APIs
to confirm the robustness of the model. The findings
demonstrate that, in comparison to more conventional
approaches, the model presented in this research
is more robust and stable when handling malware

variations and more successful at thwarting malware
evasion detection techniques.

2 Modeling framework
The five modules that make up our suggested
malware classification model based on heterogeneous
graph networks are the attention-based wandering
module, the LSTM-based aggregation module, the
random wandering sequence generating module, the
heterogeneous graph construction module, and the
classification and prediction module [13]. First, we
decide to create a heterogeneous graph with these
two kinds of nodes in order to categorize malware
samples based on two links between malware and APIs
and API functions in API call sequences [14]. We
use random walks to find distant "neighbor" nodes
of the nodes in order to capture the relationship
between malware and distant malware and APIs in
the heterogeneous graph. This allows us to use the
information of distant nodes to obtain the feature
representation of the current node. LSTM is used
to aggregate the feature information of each path
in order to obtain the final node representation by
combining the node information on many paths. In the
meantime, the attention mechanism is used to learn
the embedding results of various paths in order to
employ the impacts on the current node in various
paths due to the existence of many different paths
[15]. After running the acquired node representation
through a linear layer, the node classification result is
finally produced. Figure 1 depicts the overall model
structure and methodology.

Figure 1. A general methodology for classifying malware
families using heterogeneous graph networks

2.1 Construction of isomorphic graphs
Since applications require APIs to access operating
system functions at runtime, as was previously
mentioned, extracting the API call sequences of
software samples can accurately and intuitively
represent the real behavior of the samples. For this

30

Mari Papel Y Corrugado

reason, we choose to analyze the malware’s API call
sequences as well as the malware itself [16]. A big
heterogeneous graph is constructed with two types of
nodes: malware and API, and the edges that result
from their relationships. The call relationship between
malware and API functions creates the edges between
malware and APIs; that is, when malware calls an API,
a MAL-API edge is created. We decide to simplify
each software’s API call sequence by eliminating API
subsequences that share consecutive API functions and
usage patterns in order to shorten the length of API
calls and reduce graph complexity [17, 18]. Table 1
displays the streamlined procedure.The call order in the
API sequence determines the API-API concatenation.
The malware and API produce a heterogeneous graph
based on the edge rule, as seen in Figure 2, where
the blue nodes stand in for APIs, the other colors for
software samples, and the nodes of various colors are
thought to belong to distinct malware families. The
MAL-API edge is shown by the black line between
the software sample nodes and API nodes, and the
API-API edge is represented by the blue line between
the API nodes.

Initial API order Simplified API sequence
A1A2A2A2A1 A1A2A1

A1A2A3A1A2A3 A1A2A3
Table 1. Methods for simplifying the sequence of API calls

Figure 2. Heterogeneous graph building example diagram

Thus, G can be defined as follows for the isomorphic
graph that was built above:

G = (V, E). (1)

If the malware node VM and the API node VA are
concatenated to form the set of nodes V :

V = VM ∪ VA. (2)

The two types of edges—Api-Api connected edges and
Mal-Api linked edges—that are defined in this study
are included in the collection of edges E.

E = (VM × VA) ∪ (VA × VA) . (3)

All nodes are initialized using a normal distribution,
represented by the number X = {x1, x2, x3, . . . , xn} ∈
Rn×d, where d is the node’s vector dimension after
embedding and n is the number of nodes.

2.2 Generation of random walk sequence
Unknown malware varieties can be categorized with
the use of these correlations since malware may have
certain associations with contacting certain common
security-related or behaviorally different API methods.
As illustrated in Figure 3, if software samples SW1 and
SW2 call GetMessage, then both samples of software
samples SW1 and SW2 perform the operation of getting
user information, and if samples of software samples
SW2 and SW3 call SendMessage, then both samples of
software samples SW2 and SW3 perform the operation
of sending the specified message to the window, and
GetMessage and SendMessage perform the operation of
sending the specified message to the window. to some
extent, it can be assumed that software samples SW1
and SW3 are connected in some way because of the
window and the strong correlation between GetMessage
and SendMessage. A "path" based on this relationship
between the software samples and the API can be used
to classify malware that is unknown to us. This "path"
can be used to classify malware that is unknown by
looking at the relationship between software samples
and APIs.

Figure 3. Sample software calling the same API

Traditional graph-based nodes’ neighbors are typically
characterized as being centered on the target node;
nodes that are away from the center node might be
considered their k-order neighbors. However, the
majority of graph network-based techniques only take
into account how the neighboring nodes’ information
features affect the center node; they ignore the potential
impact of the higher-order neighbors on the center

31

Mari Papel Y Corrugado

node depending on the paths. For example, GCNs are
typically only taken into account for shallow GCNs
because multilayer convolution causes over-smoothing.

Using a randomized wandering based on Node2Vec, we
will be able to find the implicit associations between
the intermediate nodes of the sequence and based
on the properties of the constructed heterogeneous
graph. Each software sample node will be the central
node, and depth-first and breadth-first by means of the
parameters p, q. With the malware node acting as the
center node, a biased selection traversal is carried out
to obtain the common information of API nodes that
are closer to the malware node and malware nodes that
are farther away from the malware node.

The preferred selection method for the node x that will
be visited in the next step is shown in Eq. (3), where
dtx is the shortest distance between the node t and the
node v. This is illustrated in Figure 4 as an example
Node2Vec model graph, assuming that the previous
node t is the node v that is currently at node v. For
the next visited node, x, depth-first traversal is favored
when p > 1 and q < 1, and breadth-first traversal is
preferred when p > 1 and q < 1.

Figure 4. Node2Vec model

P (vi = x | vi−1 = v) =

1
p , dtx = 0,

1, dtx = 1,
1
q , dtx = 2.

(4)

Since malware nodes have higher-order neighbors that
are more likely to be malware nodes and first-order
neighbors that are all API nodes due to the nature of
the graph created, depth-first traversal is recommended
to obtain information about isomorphisms as far away
as possible. A traversal sequence of length Seq =
{vsi, vs1, vs2, vs3, . . . , vsk−1} is produced by wandering.
It is possible to think of every node vsj , j = 1, 2, . . . k−1
in the sequence as a neighbor of node vsi.

The set of all sequence-based neighbors vsi in the m-bar
sequences obtained by node vsi based on breadth-first
and the set of all sequence-based neighbors ND

i in
the n-bar sequences obtained by node vsi based on
depth-first can be considered the neighborhood NB for
the m- and n-bar sequences generated by node vsi based
on breadth-first and depth-first random wandering,
respectively. the collection of all sequence-based
neighbors vsj that node vsi determined to be important
in terms of depth.

2.3 Classification and forecasting
Following processing using a linear layer, the outcomes
of the multi-classification job are then mapped to the
(0, 1) interval using softmax. The final classification
result is determined by taking the highest classification
probability.

pi = softmax (hi · W) , (5)

where pi is the node i’s one-hot vector and W is the
weight matrix. The cross-entropy loss function, which
is specified as follows in the multi-classification job, is
then used to optimize the model:

L = 1
N

∑
i

Li = − 1
N

∑
i

M∑
j=1

yij log (pij) , (6)

where yij is the value when software i is projected to
be in the actual category j and 0 otherwise, and pij

is the probability that software i is predicted to be
in category j. The number of observed software is
represented by N , the number of class labels by M ,
and the categorization case by yij is represented by M .

3 Experimentation and evaluation
3.1 Experimental data
Two datasets are used to pick the experimental datasets
in order to fully measure the categorization effect of this
model. The two datasets are the Mal-API-2019 dataset
and the APIMDS dataset, which directly offer detailed
information about the API call sequences and software
sample type labels that are relevant to the task of
malware multi-classification by using the call sequences
that are suggested. The distribution of the various
categories of data subset sets is displayed in Table 2. Of
them, the APIMDS dataset comprises 23140 malwares,
including 860 worms, 10847 Trojans, 580 backdoors,
960packers, 2350 adwares, 3130 other non-viruses, and
6710 other unlabeled data. 16,395 malware were
deleted from the dataset after the unlabeled data had

32

Mari Papel Y Corrugado

to be classified in order to create the malware families
for the model.There are 7100 malware samples in the
Mal-API-2019 dataset; Table 3 displays the distribution
of malware categories and quantities in the dataset.

Types of datasets Subclass of dataset Number Total
Worm P2P-worm 50 850
Worm Email-worm 90 850
Worm Net- worm 130 850

- Trojan-Clicker 20 10794
- Trojan-banker 24 10794
- Trojan- Game Thief 100 10794
- Trojan-dropper 330 10794
- Trojan-downloader 390 10794
- Trojan-ransomware 440 10794
- Trojan-spy 530 10794
- Trojan- PSW 650 10794
- Trojan-fakeav 3690 10794
- Trojan(Generic) 3360 10794
- Others 1260 10794

Backdoor - 580 580
Packed - 960 960
Adware - 2350 2350
Other Webtoolbar 210 780
Other DownLoader 570 780

Data-without-label - 6710 6710
Table 2. APIMDS data set

Types of datasets Number
Adware 370

Backdoor 1000
Downloader 890

Dropper 830
Spyware 1000
Trojan 1000
Virus 1000
Worm 1000

Table 3. Mal-API-2019 dataset

3.2 Experimental setup
The Intel(R) Xeon(R) Gold 5122 CPU @ 3.60GHz,
NVIDIA Corporation GP102 graphics card [GeForce
GTX 1080 Ti], and Ubuntu 16.04.7 operating system
are the tools used in this experiment. Python is
the experimental language, while Pytorch is the deep
learning framework that is used. Using the Pytorch
deep learning framework, the language is Python.

This study’s model is the multiclassification model,
which is assessed by comparing the actual data to the
projected outcomes. A confusion matrix of dimension
nÖn, where n is the number of software categories, will
be produced as a result of the experiment. Because
the experiment merely chose to categorize the dataset
categories rather than breaking them down into more

in-depth subclasses, the distribution of the number of
subclasses of each type of malware sample in the dataset
varies greatly, and some of the subclasses are minor.
The following evaluation metrics are available for each
category: the precision rate (P) for each category
(K), recall (R), and F1 are the classical metrics used
to assess the model in the classification task in the
confusion matrix.

The F1 value metrics combine the results of the
precision rate and recall rate. The precision rate is the
ratio of the number of malware AC that truly belongs to
category c to the number CCi of all malware classified
as C by this model, and the recall rate is the ratio of the
number of malware TC of all malware TC belonging
to category C to the number of malware classified as
category C by this model CCi.

In the malware family categorization task, both macro-
and micro-averaging metrics are applied to aggregate
the detection findings for every family category. The
global confusion matrix is used in micro-averaging
to compute metrics like as precision, recall, and F1
value; that is, no sample in the dataset is classified.
Each category is treated equally in macro-averaging,
which then applies arithmetic averaging processes after
determining the precision, recall, and F1 value metrics
for each category independently.

3.3 Experimental
3.3.1. Model Performance. In deep learning, the data
is typically split into three categories: training,
validation, and test sets. These sets are used to train
the model, determine the model’s hyperparameters,
and assess the model’s generalization effect, in that
order. The training set will be used in the studies,
and the test set will be 7:3. Using a variety of
deep algorithms, including Node2Vec, GCN, and
GraphSAGE, experiments will be carried out to assess
the model’s detection capability as presented in this
research. Every node in the heterogeneous graph is
regarded as the same sort of node for Node2Vec, GCN,
and GraphSAGE.

The value of p in depth-first based random wandering
in the experiment is 10, the value of q is 0.1, and the
value of p in breadth-first based random wandering is
0.1 in this model in order to highlight the propensity
of depth-first and breadth-first based wandering. The
value of q is 10. The studies select varying numbers
of walks and maximum walk lengths for each node
for comparison in order to obtain sufficient traversal
paths and aggregate additional node features on the

33

Mari Papel Y Corrugado

paths. Taking into account the performance issues,
the final setting is to set each node’s maximum walk
length and number of walks to 10. This is because
when these parameters are small, the acquired sequence
information is insufficient and the classification effect
is poor, and when these parameters are large, the
classification effect is hardly improved.

Two heads are used in the attention process in the
tests.

Node2vec: This method converts nodes in a network
into a dense low-dimensional vector representation by
taking into account edges and edge weights between
nodes. Neighboring nodes in the network receive
comparable representations, and the original network
topology is maintained throughout the representation
process.

By employing a mix of depth-first and breadth-first
strategies, Node2Vec generates a feature representation
of every node in the graph through second-order
random wandering. All of the experimental parameters
are set to 10.

GCN: gathers data about core nodes’ first-order direct
neighbors and can combine data from larger neighbors
by stacking layers. Two GCN layers are put up in the
experiment.

GraphSAGE: the experiment sets k = 2, and
the aggregation function adopts the mean-value
aggregation. Samples the kth-order neighbor nodes of
each node in the graph, and updates the information of
the nodes after aggregating the information of the nodes
and the neighbor nodes according to the aggregation
function (see Table 4, Table 5).

As shown in Table 3, KMO values are between 0.703, 0.7
and 0.8, and searching data is an appropriate method
to extract information from more effective side effects.

Algorithm Precision/% Recall /% F1-score/%
Node2Vec 94.89 94.56 96.23

GCN 96.14 96.52 95.48
GraphSAGE 96.54 96.52 96.58

Proposed method 95.28 97.48 96.25
Table 4. Results of an experiment using the APIMDS

dataset

Algorithm Precision/% Recall /% F1-score/%
Node2Vec 95.25 96.12 95.24

GCN 96.12 95.62 95.25
GraphSAGE 96.54 96.25 98.24

Proposed method 96.58 96.85 96.88
Table 5. Mal-API-2019 dataset-based experimental results

Node2vec employs a random traversal of the graph,
ignoring node feature information and concentrating
more on the network structural relationship; as a
result, its classification performs worse than the
model in this study across all indexes; Similar to
this, GraphSAGE-based methods can also improve
the detection effect by taking node features into
account, but they only capture the semantics of the
second order neighbors. GCN-based methods take
into account both the graph structural information
and node feature information, which can improve the
detection effect; however, they do not focus on the
attention to different paths, so they are lower than
this model in all the indexes. Comparatively, the
GraphSAGE-based method also improves the detection
effect by considering the node features, but it loses
part of the information because it only captures the
semantics of the 2nd-order neighbors; as a result, it is
inferior to this model in all the indicators.

The GCN-based method considers both graph structure
information and node features to improve the detection
effect, but it does not pay attention to different
paths. Based on the distribution characteristics of
the nodes in the graph, the model, which is based
on the LSTM aggregated attention mechanism for
heterogeneous graphs, creates a heterogeneous graph
with both API and malware nodes. Then, depth-first
traversal and breadth-first traversal randomly wander
to obtain different sequences, respectively, to obtain
the information from the closer API nodes and the
more distant malware nodes. The sequences are then
aggregated based on various traversal techniques, and
the multi-head attention mechanism is used to enable
autonomous learning to determine the significance of
each sequence to the center node. The models in
this research achieve good results and have significant
feature extraction capabilities for various datasets.

3.3.2. Model robustness testing. A comparison
experiment of the robustness test is added in order to
detect the function of inserting, deleting, and replacing
useless APIs to avoid detection, as initially proposed
by the model. On the one hand, the robustness of the
malware deep learning model is of great significance in
the detection of malware variants.

1. Under the condition of ensuring the normal
operation of the original software function,
this experiment selects three groups of useless
{NtReadFile, NtOpenSection}, {NtOpenFile,
NtWriteFile}, {NtOpenKey, NtCloseFile} as the
perturbation objects and randomly inserts them

34

Mari Papel Y Corrugado

into the original API call sequences according
to the insertion perturbation rate in order to
ensure that the insertion perturbation rate is
approximately the same for each group of API
call sequences.

Using {NtOpenKey, NtCloseFile} as the
perturbation objects, choose the ineffective
APIs at random based on the rate of insertion
perturbation and then randomly add them back
into the original sequence of API calls.

2. We employ the method of thoroughly counting
the frequency of API functions in the API call
sequence and verifying the API function definitions
in order to identify the useless APIs in the original
API call sequence. We then pick out the useless
APIs and remove them based on the rate of
perturbation, for example, API_useless={Sleep,
IsWindow, lstrlenA, CreateFileW} and so forth.
BuildFileW} and so forth.

3. Use (2) to identify the useless APIs in the original
API call sequence. Then, choose API_useless
from the list and replace it with APIs chosen from
the useless API group depending on the rate of
perturbation.

In order to achieve a perturbation rate of 0.02,
0.04, and 0.06, respectively, the experiment selects
to inject 1 group, 2 groups, and 3 groups of
pointless APIs into the data of API call length L =
[100, 200, 300, 400, 500]. Similarly, the corresponding
number of groups of worthless APIs in the sequence
are chosen for deletion and replacement, provided that
the related perturbation rate remains constant.

Figure 5. Accuracy change accumulation following
disturbance in every comparative study

Figure 6. Accuracy variation before and after each
comparison experiment’s perturbation

Figure 7. Recall variation rec following each comparison
experiment’s perturbation

The performance changes of the other comparison
techniques after inserting, removing, and replacing
1, 2, and 3 groups of pointless API perturbations,
respectively, are depicted in Figure 5,Figure 6, and
Figure 7. As can be seen in the picture, the shallow
machine learning method’s metrics are much lower
when compared to this model, and the fluctuation
of malware detection metrics becomes more apparent
after adding, removing, and replacing the disrupted
API functions. As demonstrated in Figure 6, which
displays the comparison results of the metrics after
adding, removing, and replacing 1, 2, and 3 groups of
pointless API perturbations to the ablation experiment
model, the robustness of the ablation experiment is
also tested. The blue and red color lines in the figure
indicate the changes of the metrics of the ablation
experiment and the model, respectively. The metrics

35

Mari Papel Y Corrugado

of the ablation experiment and the model are found
to be fairly comparable, but after the pointless API
perturbation, the metrics of the model without the
API correlation rule fluctuate more significantly (see
Figure 8).

Figure 8. Ablation experiment results from a robustness
test

4 Conclusion
In this paper, we address the complex and dynamic
malware threats in the IoT environment by proposing
a malware classification model based on heterogeneous
graph networks. By creating a heterogeneous
graph with malware and API nodes, the model
enhances the precision and resilience of malware
detection and classification. It accomplishes this by
utilizing techniques like random wandering and LSTM
aggregation to fully exploit the structural relationships
among samples and node features. The model
presented in this research beats existing approaches
like Node2Vec, GCN, and GraphSAGE in several
metrics like classification accuracy, precision, recall,
and F1 value, according to experimental results on the
APIMDS and Mal-API-2019 datasets. To increase the
effectiveness and resilience of malware detection, future
study can investigate additional node feature kinds and
associations, as well as enhance the model structure.

References
[1] Ijaz, A., Khan, A. A., Arslan, M., Tanzil, A., Javed,

A., Khalid, M. A. U., & Khan, S. (2024). Innovative
machine learning techniques for malware detection.
Journal of Computing & Biomedical Informatics, 7 (01),
403-424.

[2] Almazroi, A. A., & Ayub, N. (2024). Deep learning
hybridization for improved malware detection in smart
Internet of Things. Scientific Reports, 14 (1), 7838.

[3] Lee, H., Kim, S., Baek, D., Kim, D., & Hwang, D.
(2023). Robust IoT malware detection and classification
using opcode category features on machine learning.
IEEE Access, 11, 18855-18867.

[4] Jakkani, A. K., Reddy, P., & Jhurani, J. (2023).
Design of a novel deep learning methodology for IOT

botnet based attack detection. International Journal
on Recent and Innovation Trends in Computing and
Communication Design, 11, 4922-4927.

[5] Kaushik, P. (2023). Unleashing the power of multi-agent
deep learning: Cyber-attack detection in IoT.
International Journal for Global Academic & Scientific
Research, 2 (2), 15-29.

[6] Anitha, T., Aanjankumar, S., Poonkuntran, S.,
& Nayyar, A. (2023). A novel methodology
for malicious traffic detection in smart devices
using BI-LSTM–CNN-dependent deep learning
methodology. Neural Computing and Applications,
35 (27), 20319-20338.

[7] Sasikala, S., & Sengathir, J. (2023). A review on
machine learning-based malware detection techniques
for Internet of Things (IoT) environments. Wireless
Personal Communications 132. 1-14.

[8] Wei, Y. Z., Md-Arshad, M., Samad, A. A., & Ithnin,
N. (2023). Comparing malware attack detection using
machine learning techniques in IoT network traffic.
International Journal of Innovative Computing, 13 (1),
21-27.

[9] Venkatasubramanian, M., Lashkari, A. H., & Hakak, S.
(2023). Iot malware analysis using federated learning:
A comprehensive survey. IEEE Access, 11, 5004-5018.

[10] Wang, X., Liu, J., & Zhang, C. (2023). Network
intrusion detection based on multi-domain data and
ensemble-bidirectional LSTM. EURASIP Journal on
Information Security, 2023 (1), 5.

[11] Zhang, C., Roh, B. H., & Shan, G. (2023, December).
Poster: Dynamic clustered federated framework
for multi-domain network anomaly detection. In
Companion of the 19th International Conference on
emerging Networking EXperiments and Technologies
(pp. 71-72).

[12] Soliman, S., Oudah, W., & Aljuhani, A. (2023). Deep
learning-based intrusion detection approach for securing
industrial Internet of Things. Alexandria Engineering
Journal, 81, 371-383.

[13] Odeh, A., & Abu Taleb, A. (2023). Ensemble-based
deep learning models for enhancing IoT intrusion
detection. Applied Sciences, 13 (21), 11985.

[14] Gueye, T., Wang, Y., Rehman, M., Mushtaq, R.
T., & Zahoor, S. (2023). A novel method to detect
cyber-attacks in IoT/IIoT devices on the modbus
protocol using deep learning. Cluster Computing, 26 (5),
2947-2973.

[15] Namasudra, S., Lorenz, P., & Ghosh, U. (2023). The
new era of computer network by using machine learning.
Mobile Networks and Applications, 28 (2), 764-766.

[16] Sarker, I. H., Khan, A. I., Abushark, Y. B., &
Alsolami, F. (2023). Internet of things (iot) security
intelligence: a comprehensive overview, machine
learning solutions and research directions. Mobile
Networks and Applications, 28 (1), 296-312.

36

Mari Papel Y Corrugado

[17] Munnangi, A. K., UdhayaKumar, S., Ravi, V., Sekaran,
R., & Kannan, S. (2023). Survival study on deep
learning techniques for IoT enabled smart healthcare
system. Health and Technology, 13 (2), 215-228.

[18] Meddeb, R., Jemili, F., Triki, B., & Korbaa, O. (2023).
A deep learning-based intrusion detection approach
for mobile Ad-hoc network. Soft Computing, 27 (14),
9425-9439.

37

	Introduction
	Modeling framework
	Construction of isomorphic graphs
	Generation of random walk sequence
	Classification and forecasting

	Experimentation and evaluation
	Experimental data
	Experimental setup
	Experimental
	Model Performance
	Model robustness testing

	Conclusion

