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Abstract
This study investigates the influence of anisotropic
metamaterials on electromagnetic wave propagation
in cylindrical waveguides. Through rigorous
mathematical modeling and numerical simulations
using MATLAB, we analyze how the anisotropy
factor modulates power flux direction, dispersion, and
stopping light conditions at specific frequencies. The
results demonstrate that anisotropy enables dynamic
switching between forward and backward propagation,
allowing the design of high-precision wave filters and
sensors. The proposed model’s accuracy is validated
through computational simulations, offering valuable
insights into advanced photonic applications.
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1 Introduction
The wave propagation dynamics in waveguides is
a fundamental subject of modern communications,
sensing, and material sciences. In the past
decade or so, studies on anisotropic metamaterials
artificial materials engineered to reproduce special
electromagnetic characteristics not found naturally
in materials have offered new paradigms to
control wave propagation. Unlike conventional
homogeneous materials, anisotropic metamaterials
possess direction-dependent characteristics with a
strong impact on the transmission and control of waves,
and therefore are a promising candidate to enhance the
performance of waveguides [1].

Cylindrical waveguides, widely used in microwave,
optical, and acoustic devices, offer a fertile ground
for the investigation of wave propagation with the
introduction of intricate material structures. The
introduction of anisotropic metamaterials to such
waveguides has the potential to considerably modify
the propagation characteristics, leading to novel
functionalities like wave dispersion control [2], guided
modes, and wave attenuation. However, dynamic
analysis of wave behavior in such systems is far from
simple, given the intrinsic intricacies of the interaction
between anisotropic materials and traveling waves.

The aim of this work is to provide a comprehensive
dynamic study of the influence of anisotropic
metamaterials on wave propagation in cylindrical
waveguides. Employing theoretical and numerical
approaches [3], we consider the governing equations
that describe the wave dynamics in the scenario of
anisotropic media. The study will also take into
account significant factors such as the influence of
anisotropic parameters on modal dispersion, mode
coupling, and stability of the guided wave. In addition,
we discuss potential applications of such materials
in future communication systems, sensors, and novel
waveguide geometry [4].
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The significance of this study lies in its potential to
bring new insight into dynamic wave and anisotropic
metamaterial coupling, paving the way for the
optimization of waveguide systems for next-generation
technologies. The model development and simulations
presented here are designed to facilitate improved
understanding of wave propagation in engineered
systems of this nature, paving the way for innovative
applications in numerous fields of scientific and
engineering research [5].

2 Theory
Understanding the impact of anisotropic metamaterials
on wave propagation in cylindrical waveguides is
important in the design of emerging communications,
sensing, and microwave and optical engineering
technologies. In this theoretical model, we will examine
the fundamental principles of wave and anisotropic
metamaterial interaction in waveguides, specifically the
physical and theoretical properties of these materials
and their impact on wave dynamic behavior [1, 4].

2.1 Anisotropic metamaterials
Metamaterials are artificially designed materials
intended to have properties of electromagnetic fields
that are not found in natural materials. The
electromagnetic properties of anisotropic metamaterials
depend on direction, which provides them with the
power to control waves in manners not possible
for conventional materials. These attributes are
like the intricate interaction between the elements
of metamaterials influencing wave propagation on
a large scale, such as dispersion, attenuation, and
polarization of waves [6]. Anisotropic metamaterials
are defined by directional conductivity, permeability,
and permittivity tensors. Unlike in typical isotropic
materials, these parameters are not invariant; rather,
they are direction-dependent, hence resulting in
complex wave behavior within the material. The above
characteristics can be represented by tensors, which
outline the multi-dimensional material-wave interaction
[7].

2.2 Cylindrical waveguides
Cylindrical waveguides are pipes or tubes used for
propagation of electromagnetic or acoustic waves along
their central axis, whose behavior is typically described
by their shape that determines the wave distribution
inside them.

In classical systems, wave phenomena in cylindrical
waveguides relate mostly to wall reflections and linear

wave guiding [8, 9]. With the invention of anisotropic
metamaterials, wave-material interactions are more
complex and produce new phenomena such as wave
refraction, mode transformation, and wave scattering.
The geometrical dimensions of the waveguides play a
significant role in controlling how the effects are divided
among the guided waves [10].

2.3 Wave propagation equations in anisotropic
metamaterials

In order to describe wave propagation in anisotropic
metamaterial cylindrical waveguides, wave propagation
equations must be capable of considering the
mechanical and electromagnetic characteristics of such
materials.

Modified Maxwell’s equations are fundamental in this
consideration because they contain terms that account
for the anisotropic characteristics of the material [11].

The fundamental equations of wave propagation in
such systems are Maxwell’s equations in vectorial form
with the tensor expressions for anisotropic materials
appended [12]. For example, for electromagnetic
waves, Maxwell’s equations can be written in
three-dimensional vector form with the parameters
such as permittivity and permeability replaced by their
direction-dependent versions to suit the directional
dependence in the material [13].

2.4 Wave scattering in anisotropic metamaterials
Wave scattering in anisotropic metamaterials is a
phenomenon one needs to be mindful of when studying
how such materials affect waveguides.

Scattering occurs when the waves interact with the
material in a way that alters their frequency or direction
[14].

Anisotropic metamaterial scattering depends heavily
on the directional properties of the material, such
as variations in permittivity and permeability in
different directions. We can, from scattering analysis,
determine the effect of anisotropic metamaterials on
wave propagation behaviors such as velocity and
dispersion. Understanding this scattering helps to
achieve optimized waveguide designs to promote
maximum performance in future applications [15].

2.5 Practical applications
The possible uses of anisotropic metamaterials in
waveguides are diverse and range across many fields,
including [16, 17]:
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(a) Optical and Microwave Systems: Guiding
high-frequency electromagnetic waves, including
optical and microwave waves, in cylindrical
waveguides using anisotropic metamaterials.

(b) Advanced Sensing Devices: Utilizing anisotropic
metamaterials to improve waveguide response for
accurate sensing of electromagnetic and thermal
fields.

(c) Communications: Creating waveguides that can
effectively handle wave scattering, enhancing data
transfer in high-end communication systems.

2.6 Challenges and future opportunities
Despite the promising potential of anisotropic
metamaterials to improve waveguide performance,
there are several challenges that need to be overcome.
One of the primary challenges is the need to
develop more accurate mathematical models to
characterize the interaction between waves and such
materials and to find a balance between waveguide
and material design for optimal-in-class real-world
performance. By examining the effect of these materials
on wave dynamics in cylindrical waveguides, this
research provides the foundation for building new
communication devices, sensors, and microwave devices
[18].

3 Modified Maxwell’s equations with anisotropic
effects

We start from Maxwell’s equations in an
anisotropic medium, incorporating correction terms
representing nonlinear polarization and higher-order
electromagnetic effects [10, 19] :

∇⃗ × E⃗ = −∂B⃗

∂t
+ α1∇(∇ · E⃗) + β1∇ × (∇ × E⃗),

∇⃗ × H⃗ = ∂D⃗⊥
∂t

+ γ1(∇2H) + δ1∇ × (∇ × H),

where α1, β1, γ1, δ1 are correction coefficients
accounting for higher-order anisotropic effects.

The additional terms represent directional anisotropy
and corrections to the metamaterial response.

Applying these corrections to cylindrical wave
propagation, we derive the modified Helmholtz
equation for the axial electric field component EZ [20];

1
r

d

dr
rdEz

dr
+k2−m2

r2 Ez+λ1
d4Ez

dr4 +λ2
d2Ez

dr2 +λ3E3
z,

where λ1 and λ2 represen self-induced nonlinear
polarization and higher-order dispersion effects, λ3E3

z

accounts for nonlinear interactions of the wave within
the anisotropic medium and the term d4EZ

dr4 represents
higher-order wave effects such as boundary distortions.

3.1 Modified wavenumber incorporating anisotropy
By incorporating anisotropic inhomogeneity, the
effective wavenumber is modified as:

k2
eff = k2 + α2∇2k + β2k3 + γ2

d2k

dr2 ,

where α2 accounts for permittivity gradient effects
within the waveguide, β2k3 represents third-order
nonlinear corrections. γ2

d2k
dr2 models micro-scale

anisotropic variations.

3.2 Revised stopping light condition
To determine the stopping light condition, we analyze
the modified power flux within the waveguide:

P = 1
2R

∫ 2
∏

0

∫ a

0
E × H∗.dS.

Since stopping light occurs when the effective
wavenumber is zero, we impose:

R(keff ) = 0

Yielding a new frequency relation for stopping light :

fstop = c

2
∏√

1
εrµr

− α2∇2k − β2k3 − γ2
d2k
dr2

This correction reflects multiscale anisotropic effects
on stopping light conditions, enhancing accuracy.

3.3 Advanced dispersion relation
For improved dispersion control, we introduce a
generalized dispersion relation that includes nonlinear
anisotropic corrections:

k2
eff =k2 + β3α2f2(r, θ) + β4β2g2(r, θ) + γ3α3f3(r, θ)

+ γ4β3g3(r, θ) + ξ1
d2k

dr2 + ξ2k4,

where ξ1 accounts for waveguide boundary
perturbations and ξ2k4 represents higher-order
dispersion corrections.
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3.4 Advanced group velocity equation
To assess signal stability within the waveguide, we
derive the corrected group velocity equation:

υg = dω

dkeff
+ 2η1k2

eff + η2
d2keff

dr2 ,

where η1 describes self-interaction effects between
propagating modes. And η2

d2keff

dr2 accounts for
structural deformations affecting signal stability.

3.5 Simulation setup
The numerical simulation was performed with
MATLAB by applying the Finite-Difference
Frequency-Domain (FDFD) method to solve Maxwell’s
equations in anisotropic media. The computational
domain was divided into a 200 × 200 grid for high
numerical accuracy. Perfectly Matched Layer (PML)
boundary conditions were applied to avoid unwanted
reflections at the boundaries. For numerical stability,
2000 time steps were taken with a time step size of
∆t = 0.01. A spatial resolution of ∆x = ∆y = 0.05
was selected to provide accurate representation of the
electromagnetic field. The results were verified by
comparing them with established analytical solutions
and analyzing the response of the system to various
anisotropic material parameters. The results obtained
showed excellent agreement with theoretical models
and existing research. In order to crosscheck our
findings, we have compared them with past research
work including Joannopoulos et al. [1], Russell [2], and
Baba [5]. Joannopoulos et al.[1] had only compared
photonic crystal structures with wave propagation
control, while the current study includes extension of
that study to cylindrical waveguides in anisotropic
metamaterials, showing higher tunability of dispersion
features. Also, Russell [2] exhibited enhancements in
photonic fiber applications based on metamaterials,
although our findings show a greater influence on
wave confinement and modal dispersion in structured
waveguides. Further, Baba [5] has studied slow-light
effects in photonic crystals; our observations also
establish that anisotropic metamaterials offer a
stronger method of realizing slow light conditions
by dynamically altering the effective wavenumber.
Our research numerical simulations also present more
robust consistencies with predictions in theory and
enhance the efficacy of dispersion regulation and power
flow modulation in waveguides.

4 Results and conclusions
Here, the results of simulation and respective analysis
are presented and discussed. The each of the graphical

representation describes information regarding the
physics phenomena underlying, i.e., the behavior
of wave propagation, distribution of group velocity,
and how they change with the radial and angular
coordinates. The following figures show the key results
of the research, emphasizing how various parameters
influence the wave behavior within the considered
medium.

Figure 1. Stopping Light Condition

Figure 1 is observed in a regular optical medium
with a parametric configuration where the radial
coordinate (r) varies from 0 to 10 and the angular
coordinate (θ) varies from 0 to 6 radians. The
color bar between 2.6 × 108 and 3.6 × 108 represents
the intensity of the stopping condition where higher
values are dense in the yellow regions and lower
values in the black regions. This dispersion highlights
anisotropic dispersion effects and effective refractive
index variations, which are of utmost significance in
controlling light propagation in slow-light photonic
structures and in optical waveguides.

Figure 2. Fixed group velocity distribution

Figure 2 shows the inhomogeneous radial group velocity
distribution Vg in terms of r and angular coordinate
θ, wherein color scale shows group velocity variation
with warmer color (red) employed to depict higher
values and cooler color (blue) to represent lower values,
explaining directional dispersion effects. The values
of the parameters are r = 0 to 10 and θ = 0 to 2π,
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and it is clear that Vg is a function of r and θ, and
this confirms the inhomogeneity of wave propagation.
This computation is a major application in photonic
materials and metamaterials engineering, where it is
important to manage group velocity to achieve slow
light effects, optical storage, and wavefront shaping.

Figure 3. Effective wavenumber distribution

Figure 3 shows the inhomogeneous group velocity
distribution Vg with respect to radial distance r and
angular coordinate θ, where color scale represents group
velocity variations with warmer colors (red) employed
to represent larger values and cooler colors (blue) for
smaller values, delineating directional dispersion effects.
The values of parameters vary between r = 0 to 10
and θ = 0 to 2π, which indicates that Vg depends
on r and θ, as per wave propagation inhomogeneity.
This computation is critical in photonic materials and
metamaterials engineering, where controlling group
velocity is crucial to facilitate slow light effects, optical
storage, and wavefront shaping.

Figure 4. Effective wavenumber distribution and group
velocity transformations in an inhomogeneous medium

The results presented in the Figure 4 illustrate the
behavior of the effective wavenumber keff, group

velocity Vg, and how they are reshaped under different
mathematical manipulations, highlighting their spatial
behaviors as a function of radial distance r and
angular coordinate θ. The "Absolute Stopping Light
Condition" figure illustrates the spatial modulation of
|kstop|, represented by crests and troughs indicative
of wave confinement and local trapping of energy
within regions. The "Logarithmic Wavenumber
Distribution" plot provides a logarithmic keff scale,
which emphasizes order of magnitude variations
and provides more detail on the finer points of
dispersion characteristics. The "Exponential Decay
of Wavenumber" plot presents exp(−keff), which
is necessary to study wave attenuation and space
decay, with the smooth trend reflecting gradual
energy dissipation. Finally, the "Sine Transformation
of Wavenumber" plot plots sin(keff), reflecting the
oscillatory character of the wavenumber, and is due to
phase modulation effects. These plots combined give
insight into the interplay between wave confinement,
dispersion, and attenuation in structured media, which
is central to the design of next-generation photonic and
metamaterial applications.

Figure 5. Contour plot cosine transformation of group
velocity

Figure 6. 3D Plot cosine transformation of group velocity

Figure 5 and Figure 6 show the spatial distribution of
the function cos(vg) in metamaterials, exhibiting the
dynamic fluctuations in group velocity in a periodic
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medium. The wave distribution results from the
interaction of waves within the material, leading to
typical oscillation patterns due to interference and
dispersion effects. areas of high value are represented
by light colors, i.e., yellow, and areas of low value are
represented by dark color, which represent the spatial
distribution of energy as well as wave propagation
properties. This kind of distribution is important in
photonic and microwave system design to facilitate
control of the spectral and dispersive properties of
the metamaterial. This enables greater control over
the response of photonic structures to particular
wavelengths and hence improves their performance
in waveguiding, filtering, and sensing applications.

5 Conclusion
The research provides a complete investigation of
the wave dynamics in an inhomogeneous medium
in terms of the distribution of effective wavenumber
keff, group velocity Vg, and absolute stopping light
conditions, and how logarithmic, exponential, and
cosine transformations influence wave propagation.
The results show that all of these parameters strongly
depend on the radial coordinate rrr and angular
coordinate θ because of the geometrical effect of the
surrounding medium. These findings confirm the
feasibility of greater precision in controlling dispersion,
amplification, and attenuation and further consolidate
the application of photonic and metamaterial designs
in optical communication systems and future sensing
technologies. Also, the numerical calculations were
found to be in very good agreement with theoretical
models, validating the used methodology. However,
some of the phenomena that were observed might
require further experimental verification to ascertain
accuracy in real-world applications.
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